(10分)已知直线的极坐标方程为,圆的参数方程为(其中为参数)
(1)将直线的极坐标方程化为直角坐标方程;(2)求圆上的点到直线的距离的最小值
(10分)如图内接于圆,,直线切圆于点,弦相交于点。(1)求证≌;(2)若
(12分)已知焦点在轴上,离心率为的椭圆的一个顶点是抛物线的焦点,过椭圆右焦点的直线交椭圆于两点,交轴于点,且,(1)求椭圆方程;(2)证明:为定值
(12分)已知函数. (1)求在函数图像上点处的切线的方程;(2)若切线与轴上的纵坐标截距记为,讨论的单调增区间
(12分)如图,在梯形中,是的中点,将沿折起,使点到点的位置,使二面角的大小为
(1)求证:;
(2)求直线与平面所成角的正弦值
(12分)2008年5月12日,四川汶川发生8.0级特大地震,通往灾区的道路全部中断。5月12日晚,抗震救灾指挥部决定从水路(一支队伍)、陆路(东南和西北两个方向各一支队伍)和空中(一支队伍)同时向灾区挺进。在5月13日,仍时有较强余震发生,天气状况也不利于空中航行。已知当天从水路抵达灾区的概率是,从陆路每个方向抵达灾区的概率都是,从空中抵达灾区的概率是。(1)求在5月13日恰有1支队伍抵达灾区的概率;(2)求在5月13日抵达灾区的队伍数的数学期望。