如图,已知中心在原点,焦点在x轴上的椭圆经过点(,),且它的左焦点F1将长轴分成2∶1,F2是椭圆的右焦点.
(1)求椭圆的标准方程;
(2)设P是椭圆上不同于左右顶点的动点,延长F1P至Q,使Q、F2关于∠F1PF2的外角平分线l对称,求F2Q与l的交点M的轨迹方程.
(1)设x∈R,比较x3与x2-x+1的大小.
(2)设a>0,b>0,求证:≥.
已知圆M的半径为,圆心在直线y=2x上,圆M被直线x-y=0截得的弦长为,求圆M的方程
下列四个关于圆锥曲线的命题:
①已知M(-2,0)、N(2,0),|PM|+|PN|=3,则动点P的轨迹是一条线段;
②从双曲线的一个焦点到一条渐近线的距离等于它的虚半轴长;
③双曲线与椭圆有共同的准线;
④关于x的方程x2-mx+1=0(m>2)的两根可分别作为椭圆和双曲线的离心率.
其中正确的命题是 .(填上你认为正确的所有命题序号)
设实数x,y满足则z=x+y的最大值是 .
不等式≤0的解集是_________