(本题满分12分)已知二次函数,不等式的解集为或
(1)求的值;
(2)若在[-1,1]上单调递增,求实数的取值范围.
(本题满分12分)如图所示,四棱锥,底面是边长为2的正方形,,,过点作,连接.
(1)求证:.
(2)若面交侧棱 于点,求多面体的体积。
(本题满分12分)△中,已知内角、、所对的边分别为、、,且
(1) 求角的大小;
(2)已知向量,,求的取值
(本题满分12分)某市为了争创“全国文明城市”,市文明委组织了精神文明建设知识竞赛。统计局调查队随机抽取了甲、乙两队中各6名组员的成绩,得分情况如下表所示:
甲组 |
84 |
85 |
87 |
88 |
88 |
90 |
乙组 |
82 |
86 |
87 |
88 |
89 |
90 |
(1) 根据表中的数据,哪个组对精神文明建设知识的掌握更为稳定?
(2) 用简单随机抽样方法从乙组6名成员中抽取两名,他们的得分情况组成一个样本,求抽
出的两名成员的分数差值至少是4分的概率。
给出下列命题:
①.在等差数列中,且 ,则使数列前n项和 取最小值的n等于5;
②的外接圆的圆心为O,半径为1,,且,则向量在向量方向上的投影为;
③曲线与直线有两个交点,则的取值范围是或;
④若定义在区间D上的函数f(x)对于D上任意n个值x1、x2、…xn总满足
,则f(x)称为D上的凸函数,现已知
在上凸函数,则锐角△ABC中的最大值为。
其中正确命题的序号是 。
若圆C的半径为1,圆心在第一象限,且与直线和轴相切,则该圆的标准方程是 ;