(12分)如图: PA⊥平面ABCD,ABCD是矩形,PA=AB=1,
AD=,点F是PB的中点,点E在边BC上移动.
(Ⅰ)求三棱锥E-PAD的体积;
(Ⅱ)当点E为BC的中点时,试判断EF与平面
PAC的位置关系,并说明理由;
(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF.
已知函数,
(Ⅰ)求函数的最小值;
(Ⅱ)已知,命题p:关于x的不等式对任意恒成立;命题:指数函数是增函数.若“p或q”为真,“p且q”为假,求实数的取值范围.
在直角坐标系中,直线的参数方程为(为参数),在极
坐标系(与直角坐标系取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,圆C的方程为。
① 求圆C的直角坐标方程;
② 设圆C与直线交于点A、B,若点P的坐标为,求|PA|+|PB|。
某程序流程框图如图所示,现执行该程序,输入下列函数
则可以输出的函数是=___________
三次函数在处的切线方程为,则
已知函数的最大值和最小值分别是和,则