若规定=|ad-bc|,则不等式<0的解集为
经济学中的“蛛网理论”(如下图),假定某种商品的“需求—价格”函数的图像为直线,“供给—价格”函数的图像为直线,它们的斜率分别为,与的交点为“供给—需求”平衡点,在供求两种力量的相互作用下,该商品的价格和产销量,沿平行于坐标轴的“蛛网”路径,箭头所指方向发展变化,最终能否达于均衡点,与直线、的斜率满足的条件有关,从下列三个图中可知最终能达于均衡点的条件为 ( )
A. B. C. D.可取任意实数
已知平面区域如右图所示,在平面区域内取得最大值的最优解有无数多个,则的值为 ( )
A. B.
C. D.不存在
在坐标平面内,与点A(1,2)的距离为1,且与点B(5,5)的距离为d的直线共有4条,则d的取值范围是 ( )
A.0<d<4 B.d≥4
C.4<d<6 D.以上结果都不对
在正方体ABCD—A1B1C1D1中,M为DD1的中点,O为ABCD的中心,P为棱A1B1上的任一点,则直线OP与AM所成角为 ( )
A.30° B.45° C.60° D.90°
已知两点A(-2,0)、B(0,2),点C是圆x2+y2-2x=0上的任意一点,则△ABC面积的最小值是 ( )
A.3- B.3+
C. D.