(14分)已知函数 (a>0)
(1)判断并证明y=在x∈(0,+∞)上的单调性;
(2)若存在,使,则称为函数的不动点,现已知该函数有且仅有一个不动点,求的值,并求出不动点;
(3)设=,若y=在(0,+∞)上有三个零点 , 求的取值范围.
(12分)已知数列的前n项和为,且满足=2+n (n>1且n∈)
(1)求数列的通项公式和前n项的和
(2)设,求使得不等式成立的最小正整数n的值
(12分)右图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC//PD,且PD=AD=2CE=2 .
(1)若N为线段PB的中点,求证:EN⊥平面PDB;
(2)求该几何体的体积;
(12分)如图,在四棱锥S—ABCD中,底面ABCD为矩形,SA⊥平面ABCD,SA=AD,M为AB中点,N为SC中点.
(1)证明:MN//平面SAD;
(2)证明:平面SMC⊥平面SCD;
(12分) 已知三次函数=,、为实数,=1,
曲线y=在点(1,)处切线的斜率为-6。
(1)求函数的解析式;
(2)求函数在(-2,2)上的最大值