(本小题满分12分)
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
(I)假设n=2,求第一大块地都种植品种甲的概率;
(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:
品种甲 |
403 |
397 |
390 |
404 |
388 |
400 |
412 |
406 |
品种乙 |
419 |
403 |
412 |
418 |
408 |
423 |
400 |
413 |
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
附:样本数据的的样本方差,其中为样本平均数.
(本小题满分12分)
如图,四边形ABCD为正方形,QA⊥平面ABCD,PD∥QA,QA=AB=PD.
(I)证明:PQ⊥平面DCQ;
(II)求棱锥Q—ABCD的的体积与棱锥P—DCQ的体积的比值.
(本小题满分12分)
△ABC的三个内角A,B,C所对的边分别为a,b,c,asinAsinB+bcos2A=a.
(I)求;
(II)若c2=b2+a2,求B.
已知函数有零点,则的取值范围是___________.
Sn为等差数列{an}的前n项和,S2=S6,a4=1,则a5=____________.
调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),
调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线
方程:.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平
均增加____________万元.