(本小题满分10分)选修4-5:不等式选讲
已知函数=|x-2|x-5|.
(I)证明:≤≤3;
(II)求不等式≥x2x+15的解集.
(本小题满分10分)选修4-4:坐标系统与参数方程
在平面直角坐标系xOy中,曲线C1的参数方程为(为参数),曲线C2的参数方程为(,为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=与C1,C2各有一个交点.当=0时,这两个交点间的距离为2,当=时,这两个交点重合.
(I)分别说明C1,C2是什么曲线,并求出a与b的值;
(II)设当=时,l与C1,C2的交点分别为A1,B1,当=时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.
请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.做答时用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑.
(本小题满分10分)选修4-1:几何证明选讲
如图,A,B,C,D四点在同一圆上,AD的延长线与BC的延长线交于E点,且EC=ED.
(I)证明:CD//AB;
(II)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.
(本小题满分12分)
如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D.
(I)设,求与的比值;
(II)当e变化时,是否存在直线l,使得BO∥AN,并说明理由.
(本小题满分12分)
设函数=x+ax2+blnx,曲线y=过P(1,0),且在P点处的切斜线率为2.
(I)求a,b的值;
(II)证明:≤2x-2.
(本小题满分12分)
某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙.
(I)假设n=2,求第一大块地都种植品种甲的概率;
(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:
品种甲 |
403 |
397 |
390 |
404 |
388 |
400 |
412 |
406 |
品种乙 |
419 |
403 |
412 |
418 |
408 |
423 |
400 |
413 |
分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?
附:样本数据的的样本方差,其中为样本平均数.