.如图:正三棱柱ABC—A1B1C1中,D是BC的中点,AA1=AB=1.
(1)求证:A1C//平面AB1D;
(2)求二面角B—AB1—D的大小;
(3)求点C到平面AB1D的距离.
将两块三角板按图甲方式拼好,其中,,,AC = 2,现将三角板ACD沿AC折起,使D在平面ABC上的射影O恰好在AB上,如图乙.
(I)求证:BC ⊥AD;
(II)求证:O为线段AB中点;
(III)求二面角D-AC-B的大小的正弦值.
.四棱锥的底面是正方形,,点E在棱PB上.
(Ⅰ)求证:平面;
(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.
已知正三棱锥的侧面积为18 cm,高为3cm. 求它的体积 .
如图3,为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量,产品数量的分组区间为,,,,,由此得到频率分布直方图如图3,则这20名工人中一天生产该产品数量在的人数是 。
若一条直线与一个正四棱柱各个面所成的角都为,则=_____.