为了在夏季降温和冬季供暖时减少能源损耗,房屋的房顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元,该建筑物每年的能源消耗费用为C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0x10),若不建隔热层,每年能源消耗费用为8万元。设f(x)为隔热层建造费用与20年的能源消耗费用之和。
(1)求k的值及f(x)的表达式;
(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值。
已知数列,计算,猜想的表达式,并用数学归纳法证明猜想的正确性
设.
(1)求函数的单调区间;
(2)若当时恒成立,求的取值范围。
已知函数在轴上的截距为1,且曲线上一点处的切线斜率为.(1)曲线在P点处的切线方程;(2)求函数的极大值和极小值
函数,则=_______
在函数的图象上,其切线的倾斜角小于的点中,横纵坐标均为整数的点的个数是
A.3 B.2 C.1 D. 0