(13分)
某研究机构为了研究人的脚的大小(码)与身高(厘米)之间的关系,随机抽测了20人,得到如下数据:
序号 |
身高x |
脚长y |
序号 |
身高x |
脚长y |
1 |
176 |
42 |
11 |
179 |
44 |
2 |
175 |
44 |
12 |
169 |
43 |
3 |
174 |
41 |
13 |
185 |
45 |
4 |
180 |
44 |
14 |
166 |
40 |
5 |
170 |
42 |
15 |
174 |
42 |
6 |
178 |
43 |
16 |
167 |
42 |
7 |
173 |
42 |
17 |
173 |
41 |
8 |
168 |
40 |
18 |
174 |
42 |
9 |
190 |
46 |
19 |
172 |
42 |
10 |
171 |
42 |
20 |
175 |
41 |
(1)若“身高大于175厘米”的为“高个”,“身高小于等于175厘米”的为“非高个”,“脚长大于42码”的为“大脚”,“脚长小于等于42码”的为“非大脚”.请根据上表数据完成如下2×2列联表;
|
高个 |
非高个 |
合计 |
大脚 |
|
|
|
非大脚 |
|
12 |
|
合计 |
|
|
20 |
(2)根据题(1)中表格的数据,若按99%的可靠性要求,能否认为脚的大小与身高有关系?
(13分)
已知数列中,,且,
(1)试归纳出这个数列的通项公式;(不用证明)
(2)设数列,求数列的前n项和.
(13分)已知函数 ,若函数在处有极值-6,求的单调递减区间;
在极坐标系中,已知两点,则|AB|= .
在平面上,若两个正三角形的边长的比为1:2,则他们的面积比为1:4,类似的,在空间,若两个正四面体的棱长的比为1:2,则它们的体积比为 .
在极坐标系中,过圆的圆心,且垂直于极轴的直线的极坐标方程为 .