(14分)
在直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为,直线与C交于A,B两点.
(Ⅰ)写出C的方程;
(Ⅱ)若,求k的值;
(Ⅲ)若点A在第一象限,证明:当k>0时,恒有||>||
. (14分)
某分公司经销某种品牌产品,每件产品的成本为元,并且每件产品需向总公司交元()的管理费,预计当每件产品的售价为元()时,一年的销售量为万件.
(1)求分公司一年的利润(万元)与每件产品的售价的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润最大,并求出的最大值.
在四棱锥中,底面为菱形,,, , ,为的中点,为的中点
(Ⅰ)证明:直线;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离。
(14分)
已知是等差数列,其前n项和为Sn,已知
(1)求数列的通项公式;
(2)设,证明是等比数列,并求其前n项和Tn.
( 12分)
已知在与时都取得极值.
(Ⅰ)求的值;
(Ⅱ)若,求的单调区间和极值。
在⊿ABC中,BC=,AC=3,sinC=2sinA
(I) 求AB的值:
(II) 求sin的值