( (本小题满分12分)
在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1上,且CC1=4CP.
(1)、求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示);
(2)、求点P到平面ABD1的距离.
(本小题满分12分)
如图,在三棱锥P-ABC中,PA=PC,∠APC=∠ACB=90°,∠BAC=30°,平面PAC⊥平面ABC.
(1)求证:平面PAB⊥平面PBC;
(2)若PA=2,求三棱锥P-ABC的体积.
(本小题满分10分)
7名学生站成一排,下列情况各有多少种不同的排法?
(1)甲、乙必须排在一起;
(2)甲不在排头,乙不在排尾;
(3)甲、乙互不相邻;
(4)甲、乙之间须隔一人
若An3=nA33,则n= .
如图,在半径为3的球面上有三点,=90°,,球心O到平面的距离是,则两点的球面距离是
一个半径为R的铅球落在沙坑内留下一个外口直径为24cm,深为8cm的空穴,则该球的半径为