对于平面和共面的直线m、n,下列命题中假命题有 ▲ 个
A.若m⊥,m⊥n,则n∥ B.若m∥,n∥,则m∥n
C.若m,n∥,则m∥n D.若m、n与所成的角相等,则n∥m
. 函数f(x)=x3-15x2-33x+6的单调递增区间是 ▲
“”是“一元二次方程x2+x+m=0有实数解”的 ▲ 条件(填充分不必要、必要不充分、充要、既不充分亦不必要之一)
命题“对任何”的否定是____▲____
(本题满分16分)
已知函数f(x)对任意实数x均有f(x)=k f(x+2),其中常数k为负数,且f(x)在区间[0,2]有表达式f(x)=x(x-2)。
⑴求f(-1),f(2.5)的值(用k表示);
⑵写出f(x)在[-3,2]上的表达式,并讨论f(x)在[-3,2]上的单调性(不要证明);
⑶求出f(x)在[-3,2]上最小值与最大值,并求出相应的自变量的取值。
(本题满分16分)
围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m的进出口,如图所示已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元)
⑴将y表示为x的函数;
⑵写出f(x)的单调区间,并证明;
⑶根据⑵,试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。