(本小题满分12分)如图,在矩形中,,又⊥平面,.
(Ⅰ)若在边上存在一点,使,
求的取值范围;
(Ⅱ)当边上存在唯一点,使时,
求二面角的余弦值.
(本小题满分12分)某工厂家具车间造A,B型两类桌子,每张桌子需木工和漆工两道工序完成.已知木工做一张A,B型桌子分别需要1 h和2 h,漆工油漆一张A,B型桌子分别需要3 h和1 h;又知木工、漆工每天工作分别不得超过8 h和9 h,而工厂造一张A,B型桌子分别获利润2千元和3千元,试问:工厂每天应生产A,B型桌子各多少张,才能获得最大利润?
(本小题满分12分)在锐角三角形ABC中,已知内角A、B、C所对的边分别为a、b、c,且且,
(1)求A、B、C的大小;
(2)若向量的值。
(本小题满分12分)已知直线l:2mx-y-8m-3=0和
圆C:(x-3)2+(y+6)2=25.
(1)证明:不论m取什么实数,直线l与圆C总相交;
(2)求直线l被圆C截得的线段的最短长度以及此时直线l的方程.
(本小题满分10分)已知直线l的方程为3x+4y-12=0, 求直线m的方程, 使得:
(1)m与l平行, 且过点(-1,3) ;
(2) m与l垂直, 且m与两轴围成的三角形面积为4.
.已知圆关于直线成轴对称,则的取值范围是________.