设函数f(x)=-x3+x2+(m2-1)x(x∈R),其中m>0.
(1)当m=1时,求曲线y=f(x)在点(1,f(1))处的切线的斜率;
(2)求函数f(x)的单调区间.
已知直线l1为曲线y=x2+x-2在点(1,0)处的切线,l2为该曲线的另一条切线,且l1⊥l2.
(1)求直线l2的方程;
(2)求由直线l1,l2和x轴所围成的三角形面积.
已知曲线上一点P(1,2),用导数的定义求在点P处的切线的斜率.
设复数,若,求实数的值.
已知,其导函数为 ,则 .
.下表给出了一个“三角形数阵”:
依照表中数的分布规律,可猜得第10行第6个数是 .