(本小题14分)
(Ⅰ)若为的极值点,求的值;
(Ⅱ)若的图象在点处的切线方程为,求在区间上的最大值;
(Ⅲ)当时,若在区间上不单调,求的取值范围.
(本小题12分)
已知双曲线的中心在原点,左、右焦点F1、F2在坐标轴上,渐近线为,且过点。
(1)求双曲线方程。
(2)若点在双曲线上,求证:;
、(本小题12分)
设函数,是实数,是自然对数的底数)
(1)当时,求的单调区间;
(2)若直线与函数的图象都相切,且与函数的图象相切于点(1,0),求P的值。
(本小题12分)
已知椭圆C的左右焦点坐标分别是(-1,0),(1, 0),离心率,直线与椭圆C交于不同的两点M,N,以线段MN为直径作圆P。
(1)求椭圆C的方程;
(2)若圆P恰过坐标原点,求圆P的方程;
(本小题12分)
有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用表示结果,其中表示投掷第1颗正四面体玩具落在底面的数字,表示投掷第2颗正四面体玩具落在底面的数字。
(1)写出试验的基本事件;
(2)求事件“落在底面的数字之和大于3”的概率;
(3)求事件“落在底面的数字相等”的概率。