(本小题满分12分)
如图,四棱锥的底面为菱形,平面,, 分别为的中点,.
(Ⅰ)求证:平面.
(Ⅱ)求三棱锥的体积.
本小题满分12分)
为调查某市学生百米运动成绩,从该市学生中按照男女生比例随机抽取50名学生进行百米测试,学生成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组,如图是按上述分组方法得到的频率分布直方图.
(Ⅰ)求这组数据的众数和中位数(精确到0.1);
(II)设表示样本中两个学生的百米测
试成绩,已知
求事件“”的概率.
(Ⅲ) 根据有关规定,成绩小于16秒为达标.
如果男女生使用相同的达标标准,则男女生达标情况如下表
性别 是否达标 |
男 |
女 |
合计 |
达标 |
______ |
_____ |
|
不达标 |
_____ |
_____ |
|
合计 |
______ |
______ |
根据上表数据,能否有99%的把握认为“体育达标与性别有关”?若有,你能否提出一个更好的解决方法来?
(本小题满分12分)
已知在中,角,,的对边的边长分别为,,,且
.
(Ⅰ)求角的大小;
(Ⅱ)现给出三个条件:①;②;③.
试从中选出两个可以确定的条件,写出你的选择,并以此为依据求出的面积.(只需写出一个选定方案即可,选多种方案以第一种方案记分)
已知双曲线与抛物线有 一个公共的焦点,且两曲线的一个交点为,若,则双曲线方程为 .
的值等于 .
.如图,在三棱锥A—BCD中,已知侧面ABD底面BCD,若,则侧棱AB与底面BCD所 成的角为 .