(本小题满分14分)
如图,线段MN的两个端点M.N分别在x轴.y 轴上滑动,,点P是线段MN上一点,且,点P随线段MN的运动而变化.
(1)求点P的轨迹C的方程;
(2)过点(2,0)作直线,与曲线C交于A.B两点,O是坐标原点,设 是否存在这样的直线,使四边形的对角线相等(即)?若存在,求出直线的方程;若不存在,试说明理由.
(本小题12分)
在平面直角坐标系中,直线与抛物线相交于.两点。
(1)求证:“如果直线过点,那么”是真命题。
(2)写出(1)中命题的逆命题(直线与抛物线相交于.两点为大前提),判断它是真命题还是假命题,如果是真命题,写出证明过程;如果是假命题,举出反例说明
(本小题12分)
如图,四棱锥中,底面ABCD为矩形,底面ABCD,AD=PD=1,AB=(),E,F分别CD.PB的中点。
(Ⅰ)求证:EF平面PAB;,
(Ⅱ)当时,求AC与平面AEF所成角的正弦值。
(本小题12分)
已知双曲线的中心在原点,左右焦点分别为,离心率为,且过点,
(1)求此双曲线的标准方程;
(2)若直线系(其中为参数)所过的定点恰在双曲线上,求证:。
(本小题12分)
如图所示,直三棱柱ABC—A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分别是A1B1、A1A的中点.
(1)求的长;
(2)求cos< >的值;
] (3)求证:A1B⊥C1M.
(本小题12分)
命题;
命题是增函数,求实数的取值范围