.(本题满分12分)
已知数列是等差数列,;数列的前n项和是,且.
(Ⅰ) 求数列的通项公式;
(Ⅱ) 求证:数列是等比数列;
(Ⅲ) 记,求的前n项和.
(本题满分12分)
已知椭圆的中心在原点,焦点在轴上,椭圆上的点到焦点的距离的最
小值为,离心率为。
(I)求椭圆的方程;
(Ⅱ)过点(1,0)作直线交于、两点,试问:在轴上是否存在一个定点,使为定值?若存在,求出这个定点的坐标;若不存在,请说明理由。
(本题满分12分)
已知函数f(x)=lnx-ax(a∈R)。
(1)若函数f(x)单调递增,求实数a的取值范围;
(2)当a>0时,求函数f(x)在[1,2]上的最小值。
.(本题满分12分)
如图,四棱锥的底面是正方形,侧面
是等腰三角形且垂直于底面,,
,、分别是、的中点。
(1)求证:;
(2)求二面角的大小。
(本题满分12分)
设p:实数x满足,其中,命题实数满足.
(Ⅰ)若且为真,求实数的取值范围;
(Ⅱ)若是的充分不必要条件,求实数的取值范围.
(本题满分10分)
如图,要计算西湖岸边两景点与的距离,由于地形的限制,需要在岸上选取和两点,现测得,,, ,,求两景点与的距离(精确到0.1km).参考数据: