(本小题满分12分)(1)对于定义在上的函数,满足,求证:函数在上是减函数;
(2)请你认真研读(1)中命题并联系以下命题:若是定义在上的可导函数,满足,则是上的减函数。然后填空建立一个普遍化的命题:
设是定义在上的可导函数,,若 +,
则 是上的减函数。
注:命题的普遍化就是从考虑一个对象过渡到考虑包含该对象的一个集合;或者从考虑一个较小的集合过渡到考虑包含该较小集合的更大集合。
(3)证明(2)中建立的普遍化命题。
五位同学围成一圈依序循环报数,规定:①第一位同学首次报出的数为1,第二位同学首次报出的数也为1,之后每位同学所报出的数都是前两位同学所报出的数之和;
②若报出的数为3的倍数,则报该数的同学需拍手一次.
已知甲同学第一个报数,当五位同学依序循环报到第100个数时,甲同学拍手的总次数为________.
一个顶点在下,底面在上的圆锥形容器,其底面半径等于圆锥的高,若以
的速度向该容器注水,则水深10时水面上升的速度为
设为区间上的连续函数,且恒有,可以用随机模拟
方法近似计算积分,先产生两组(每组个)区间上的均匀随机数
和,由此得到个点。再数出其中满足
的点数,那么由随机模拟方法计算积分的近似值为__
满足复数在复平面上的对应点的轨迹是
(注意仅回答轨迹类型不给分)
设,为不同的两点,直线,,
以下命题中正确的序号为( ).
不论为何值,点N都不在直线上;
若,则过M,N的直线与直线平行;
若,则直线经过MN的中点;
若,则点M、N在直线的同侧且直线与线段MN的延长线相交.
A.(1)(2)(3) B.(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3)(4)