从10名大学毕业生中选3个担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( )
A.85 B.56 C.28 D.49
一条直线若同时平行于两个相交平面,则这条直线与这两个平面的交线的位置关系是( )
A.异面 B.平行 C.相交 D.不确定
(本小题满分12分)
甲、乙两人各射击一次,击中目标的概率分别是和.假设两人射击是否击中目标相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响.
(1)求甲射击4次,至少有1次未击中目标的概率;
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率.
(本小题满分12分)
如图所示,在直三棱柱ABC-A1B1C1中,AB=1,AC=AA1=,∠ABC=60°.
(1)证明:AB⊥A1C;
(2)求二面角A-A1C-B的余弦值.
(本小题满分13分)
如图,平面α⊥平面β,A∈α,B∈β,AB与平面α、β所成的角分别为和,过A、B分别作两平面交线的垂线,垂足为A′、B′,若AB=12,求A′B′的长度.
(本小题满分13分)
半径为10 cm的球被两个平行平面所截,两个截面圆的面积分别为36π cm2,64π cm2,求这两个平行平面的距离.