已知的图象经过点,且在处的切线方程是
求的解析式;
有4个不同的球,四个不同的盒子,把球全部放入盒内.
(1)共有多少种放法?
(2)恰有一个盒子不放球,有多少种放法?
(3)恰有一个盒内放2个球,有多少种放法?
(4)恰有两个盒不放球,有多少种放法?
从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,)共有种取法.在这种取法中,可以分成两类:一类是取出的m个球全部为白球,共
有种取法;另一类是取出的m个球有个白球和1个黑球,共有种取法.显然立,即有等式:.试根据上述思想,类比化简下列式子: .
某射手射击1次,击中目标的概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:
①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;
③他至少击中目标1次的概率是.
其中正确结论的序号是 (写出所有正确结论的序号).
若,则= ___________.
3个人坐8个座位,要求每个人左右都有空座位,有 种坐法.