(本小题满分12分)
已知椭圆,分别为顶点,F为焦点,过F作轴的垂线交椭圆于点C,且直线与直线OC平行.
(1)求椭圆的离心率;
(2)已知定点M(),为椭圆上的动点,若的重心轨迹经过点,求椭圆的方程.
本小题满分12分)
如图,在棱长为a的正方体ABCD—A1B1C1D1中,E、F分别为棱AB和BC的中点,EF交BD于H。
(1)求二面角B1—EF—B的正切值;
(2)试在棱B1B上找一点M,使D1M⊥平面EFB1,并证明你的结论.
.(本小题满分12分)
已知函数
(1)讨论函数的单调区间;
(2)求函数在[0,2]上的最大值和最小值.
(本小题满分10分)
用平行于四面体的一组对棱、的平面截此四面体(如图).
(1)求证:所得截面是平行四边形;
(2)如果.求证:四边形的周长为定值.
.已知平面,空间任意三条两两平行且不共面的直线,若直线与,与,与确定的平面分别为,则平面内到平面距离相等的点的个数可能为__
.直线与函数的图象有相异的三个公共点,则a的取值范围是______.