(本小题满分14分)
已知数列的前n项和满足:(为常数,)
(Ⅰ)求的通项公式;
(Ⅱ)设,若数列为等比数列,求的值;
(Ⅲ)在满足条件(Ⅱ)的情形下,,数列的前n项和为.
求证:.
(本题满分14分)
已知向量,函数,且图象上一个最高点的坐标为,与之相邻的一个最低点的坐标为.
(Ⅰ)求的解析式;
(Ⅱ)在△ABC中,是角A、B、C所对的边,且满足,求角B的大小以及的取值范围.
如图,在△ABC和△AEF中,B是EF的中点,AB=EF=1,,若
,则与的夹角等于 .
如图所示,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,AC=,BC=CC1=1,P是BC1上一动点,则的最小值是_____.
一袋子中有大小、质量均相同的10个小球,其中标记“开”字的小球有5个,标记“心”字的小球有3个,标记“乐”字的小球有2个.从中任意摸出1个球确定标记后放回袋中,再从中任取1个球.不断重复以上操作,最多取3次,并规定若取出“乐”字球,则停止摸球.则摸球次数的数学期望为 .
已知为如图所示的程序框图中输出的结果,则二项式的展开式中含项的系数是 .