已知椭圆方程为,斜率为的直线过椭圆的上焦点且与椭圆相交于,两点,线段的垂直平分线与轴相交于点.
(Ⅰ)求的取值范围;
(Ⅱ)求△面积的最大值.
某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)
分成六段,后画出如下图的频率分布直方图,观察图形,回答
下列问题:
(Ⅰ)求第四小组的频率,并补全这个频率分布直方图;
(Ⅱ)估计这次考试的合格率(60分及60分以上为合格);
(Ⅲ)把90分以上(包括90分)视为成绩优秀,那么从成绩是60分以上(包括60分)的
学生中选一人,求此人成绩优秀的概率.
如图,已知长方体底面为正方形,为线段的中点,为线段的中点.
(Ⅰ)求证:∥平面;
(Ⅱ)设的中点,当的比值为多少时,并说明理由.
等比数列的前项和为,已知成等差数列.
(1)求数列的公比;
(2)若,问是数列的前多少项和.
若函数有两个零点,则的取值范围是 。
已知,若与的夹角为锐角,则的取值范围是 。