已知集合A=,则实数a的取值范围是( )
A.(0,4) B.(0,3) C.(1,3) D.(2,3)
(本题18分)
已知:正数数列的通项公式
(1)求数列的最大项;
(2)设,确定实常数,使得为等比数列;
(3)(理)数列,满足,,其中为第(2)小题中确定的正常数,求证:对任意,有且或且成立.
(文)设是满足第(2)小题的等比数列,求使不等式成立的最小正整数.
(本题16分)
如图,F是抛物线的焦点,Q是准线与轴的交点,斜率为的直线经过点Q.
(1)当K取不同数值时,求直线与抛物线交点的个数;
(2)如直线与抛物线相交于A、B两点,求证:是定值
(3)在轴上是否存在这样的定点M,对任意的过点Q的直线,如与抛物线相交于A、B两点,均能使得为定值,有则找出满足条
件的点M;没有,则说明理由.
(本题16分)
如图所示,某人在斜坡P处仰视正对面山顶上一座铁塔,塔高AB=80米,塔所在山高OA=220米,OC=200米,观测者所在斜坡CD近似看成直线,斜坡与水平面夹角为,
(1)以射线OC为轴的正向,OB为轴正向,建立直角坐标系,求出斜坡CD所在直线方程;
(2)当观察者P视角∠APB最大时,求点P的坐标(人的身高忽略不计).
(本题14分)
△ABC中,角A、B、C的对边依次为、、.已知,,外接圆半径,
边长为整数,
(1)求∠A的大小(用反三角函数表示);
(2)求边长;
(3)在AB、AC上分别有点D、E,线段DE将△ABC分成面积相等的两部分,求线段DE长的最小值.
(本题14分)
如图,四棱锥中,底面ABCD是矩形,PA⊥平面ABCD,PA=AB=1,BC=2,E为PD的中点
(1)求异面直线PA与CE所成角的大小;
(2)(理)求二面角E-AC-D的大小。
(文)求三棱锥A-CDE的体积。