1. 我国计划发射火星探测器,该探测器的运行轨道是以火星(其半径百公里)的中心为一个焦点的椭圆. 如图,已知探测器的近火星点(轨道上离火星表面最近的点)到火星表面的距离为百公里,远火星点(轨道上离火星表面最远的点)到火星表面的距离为800百公里. 假定探测器由近火星点第一次逆时针运行到与轨道中心的距离为百公里时进行变轨,其中、分别为椭圆的长半轴、短半轴的长,求此时探测器与火星表面的距离(精确到1百公里).
1. 已知动点(x, y) 在曲线C上,将此点的纵坐标变为原来的2倍,对应的横坐标不变,得到的点满足方程;定点M(2,1),平行于OM的直线在y轴上的截距为m(m≠0),直线与曲线C交于A、B两个不同点.
(1)求曲线的方程; (2)求m的取值范围.
1. 已知:以点C (t, )(t∈R , t ≠ 0)为圆心的圆与轴交于点O, A,与y轴交于点O, B,其中O为原点.
(1)求证:△OAB的面积为定值;
(2)设直线y = –2x+4与圆C交于点M, N,若OM = ON,求圆C的方程.
1. 求过两直线l1:x+y+1=0与l2:5x-y-1=0的交点,且与直线3x+2y+1=0的夹角为45o的直线的方程.
1. 定义:平面内两条相交但不垂直的数轴构成的坐标系(两条数轴的原点重合且单位长度相同)称为平面斜坐标系;在平面斜坐标系xOy中,若 (其中分别是斜坐标系x轴、y轴正方向上的单位向量,x、y∈R,O为坐标系原点),则有序数对(x,y)称为点P的斜坐标.在平面斜坐标系xOy中,若=120°,点M的斜坐标为(1,2),则以点M为圆心,1为半径的圆在斜坐标系xOy中的方程是 ( )
A. B.
C. D.
1. 已知椭圆,长轴在轴上. 若焦距为,则等于( )
A.. B.. C.. D.8.