设
,
是与
同向的单位向量,则
的坐标是 .
若
,则
.
(16分)
已知数列
中,
且点
在直线
上.
(1)求数列
的通项公式;
(2)若函数![]()
求函数
的最小值;
(3)设
表示数列
的前
项和.试问:是否存在关于
的整式
,使得
对于一切不小于2的自然数
恒成立? 若存在,写出
的解析式,并加以证明;若不存在,试说明理由。
设斜率为
的直线
交椭圆
:
于
两点,点
为弦
的中点,直线
的斜率为
(其中
为坐标原点,假设
、
都存在).
(1)求
×
的值.
(2)把上述椭圆
一般化为
(
>
>0),其它条件不变,试猜想
与
关系(不需要证明).请你给出在双曲线
(
>0,
>0)中相类似的结论,并证明你的结论.
有一种变压器铁芯的截面呈正十字形,为保证所需的磁通量,要求正十字形的面积为4
cm2,为了使用来绕铁芯的铜线最省,即正十字形外接圆周长最短,应如何设计 正十字形的长和宽?
已知函数
是奇函数.
(1)求
的值;
(2)判断函数
的单调性,并用定义证明;
(3)求函数的值域.
