(12分) 围建一个面积为360的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2的进出口,如图所示。已知旧墙的维修费用为45元/,新墙的造价为180元/。设利用的旧墙长度为(单位:),修建此矩形场地围墙的总费用为(单位:元) (Ⅰ)将表示为的函数;(Ⅱ)试确定,使修建此矩形场地围墙的总费用最小,并求出最小总费用。
(12分)在各项均为负数的数列中,已知,且,(1)求证:数列是等比数列,并求出通项公式。
(2)试问是否为该数列的项?若是,是第几项?若不是,请说明理由。
(12分)在锐角三角形ABC中,、、分别为角A、B、C 所对的边,且。(Ⅰ)确定角C的大小;(Ⅱ)若且△ABC的面积为,求的值。
(10分,每小题5分)
(1)在等差数列中,已知,求。
(2)在等比数列中,已知,求。
已知、、为三角形ABC的三个内角A、B、C 的对边,向量,若,且,则角B= ;
已知向量和向量的夹角为,∣∣=2,∣∣=,则向量和的数量积 ;