(本题满分13分)
已知椭圆的左右焦点分别为,.在椭圆中有一内接三角形,其顶点的坐标,所在直线的斜率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)当的面积最大时,求直线的方程.
(本题满分14分)
已知函数, ,且.
(Ⅰ)若,求的值;
(Ⅱ)当时,求函数的最大值;
(Ⅲ)求函数的单调递增区间.
(本题满分13分)
如图,在四棱锥中,底面是正方形,其他四个侧面都是等边三角形,与的交点为O.
(Ⅰ)求证:平面;
(Ⅱ)已知为侧棱上一个动点. 试问对于上任意一点,平面与平面是否垂直?若垂直,请加以证明;若不垂直,请说明理由.
(本题满分13分)
某运动员进行20次射击练习,记录了他射击的有关数据,得到下表:
环数 |
7 |
8 |
9 |
10 |
命中次数 |
2 |
7 |
8 |
3 |
(Ⅰ)求此运动员射击的环数的平均数;
(Ⅱ)若将表中某一环数所对应的命中次数作为一个结果,在四个结果(2次、7次、8次、3次)中,随机取2个不同的结果作为基本事件进行研究,记这两个结果分别为次、次,每个基本事件为(m,n).
求“”的概率.
(本题满分13分)
设函数.
(Ⅰ)求函数的最小正周期;
(Ⅱ)当时,求函数的最大值及取得最大值时的的值.
已知数列为等差数列,若,(,),则.
类比等差数列的上述结论,对等比数列(,),若,
(,),则可以得到= .