(本小题满分14分)
在数列和中,已知,其中且。
(I)若,求数列的前n项和;
(II)证明:当时,数列中的任意三项都不能构成等比数列;
(III)设集合,试问在区间[1,a]上是否存在实数b使得,若存在,求出b的一切可能的取值及相应的集合C;若不存在,说明理由。
(本小题满分14分)
椭圆短轴的左右两个端点分别为A,B,直线与x轴、y轴分别交于两点E,F,交椭圆于两点C,D。
(I)若,求直线的方程;
(II)设直线AD,CB的斜率分别为,若,求k的值。
(本小题满分13分)
已知,函数,记曲线在点处切线为与x轴的交点是,O为坐标原点。
(I)证明:
(II)若对于任意的,都有成立,求a的取值范围。
(本小题满分13分)
如图,已知四棱柱ABCD—A1B1C1D1中,A1D⊥底面ABCD,底面ABCD是边长为1的正方形,侧棱AA1=2。
(I)求证:C1D//平面ABB1A1;
(II)求直线BD1与平面A1C1D所成角的正弦值;
(Ⅲ)求二面角D—A1C1—A的余弦值。
(本小题满分13分)
一个盒子中装有5张卡片,每张卡片上写有一个数字,数字分别是1、2、3、5,现从盒子中随机抽取卡片。
(I)若从盒子中有放回地抽取3次卡片,每次抽取一张,求恰有两次取到的卡片上数字为偶数的概率;
(II)若从盒子中依次抽取卡片,每次抽取一张,取出的卡片不放回,当取到一张记有偶数的卡片即停止抽取,否则继续抽取卡片,求抽取次数X的分布列和期望。
(本小题满分13分)
如图,在四边形ABCD中,AB=3,AD=BC=CD=2,A=60°。
(1)求的值;
(2)求的面积。