(12分)如图所示,在直四棱柱中,, ,点是棱上一点.
(Ⅰ)求证:面;
(Ⅱ)求证:;
(Ⅲ)试确定点的位置,使得平面平面.
(12分)设、分别是椭圆的左、右焦点.
(Ⅰ)若是该椭圆上的一个动点,求的最大值和最小值;
(Ⅱ)设过定点的直线与椭圆交于不同的两点、,且∠为钝角(其中为坐标原点),求直线的斜率的取值范围.
(12分)如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,
(Ⅰ)求证:FH∥平面EDB;
(Ⅱ)求证:AC⊥平面EDB;
(Ⅲ)求四面体B—DEF的体积.
(12分)如图,已知四棱锥的底面为等腰梯形,∥,,垂足为,是四棱锥的高。
(Ⅰ)证明:平面 平面;
(Ⅱ)若,60°,求四棱锥的体积。
(12分)设,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且+=
(Ⅰ)求; (Ⅱ)若直线的斜率为1,求b的值。
一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的_______(填入所有可能的几何体前的编号)
①三棱锥 ②四棱锥 ③三棱柱 ④四棱柱 ⑤圆锥 ⑥圆柱