(12分)在平面直角坐标系xOy中,已知三点A(-1,0),B(1,0),,以A、B为焦点的椭圆经过点C。
(I)求椭圆的方程;
(II)设点D(0,1),是否存在不平行于x轴的直线与椭圆交于不同两点M、N,使
?若存在,求出直线斜率的取值范围;若不存在,请说明理由:
(III)对于y轴上的点P(0,n),存在不平行于x轴的直线与椭圆交于不同两点M、N,使,试求实数n的取值范围。
(12分)已知
(1)当x为何值时,取得最小值?证明你的结论;
(2)设f(x)在[-1,1]上是单调函数,求a的取值范围。
(12分)在如图所示的多面体中,已知正方形ABCD和直角梯形ACEF所在的平面互相垂直,EC⊥AC,EF//AC,
(1)求证:平面BEF⊥平面DEF;
(2)求二面角A—BF—E的大小。
(12分) 某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧作,两次烧制过程相互独立,根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5,0.6,0.4经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6,0.5,0.75。
(1)求第一次烧制后恰有一件产品合格的概率;
(2)经过前后两次烧制后,合格工艺品的个数为,求随机变量的期望。
(12分)已知中,
(I)求角A的大小;
(II)若BC=3,求周长的取值范围。
已知P是双曲线的右支上一点,A1,A2分别为双曲线的左、右顶点,F1,F2分别为双曲线的左、右焦点,双曲线的离心率为e,有下列命题:
①双曲线的一条准线被它的两条渐近线所截得的线段长度为
②若,则e的最大值为
③的内切圆的圆心横坐标为a;
④若直线PF1的斜率为k,则
其中正确的命题的序号是 .