(本小题满分14分)
在平面直角坐标系中,已知圆和圆.
(1)若直线过点,且被圆截得的弦长为,求直线的方程;
(2)在平面内是否存在一点,使得过点有无穷多对互相垂直的直线和,它们分别与圆和圆相交,且直线被圆截得的弦长的倍与直线被圆截得的弦长相等?若存在,求出所有满足条件的点的坐标;若不存在,请说明理由.
(本小题满分14分)
如图,已知,.
(1)试用向量来表示向量;
(2)若向量,的终点在一条直线上,
求实数的值;
(3)设,当、、、
四点共圆时, 求的值.
(本小题满分13分)
从某校高一年级参加期末考试的学生中抽出名学生,其数学成绩(均为整数)的频率分布直方图如图所示.
(1)根据频率分布直方图估计这次考试该年级的数学平均分;
(2) 已知在[90,100]内的学生的数学成绩都不相同,且都在95分以上(不含95分),现用简单随机抽样方法,从这个数中任取个数,求这个数恰好是两名学生的数学成绩的概率.
(本小题满分13分)
已知向量满足,其中.
(1)求和的值;
(2)若,求的值.
(本小题满分13分)
已知函数.
(1)求的单调递增区间;
(2)函数的图象经过怎样的平移可使其对应的函数成为偶函数? 请写出一种正确的平移方法,并说明理由.
(本小题满分13分)
某零售店近五个月的销售额和利润额资料如下表:
商店名称
|
A
|
B
|
C
|
D
|
E E
|
销售额 (千万元)
|
3
|
5
|
6
|
7
|
9 9
|
利润额(百万元)
|
2
|
3
|
3
|
4
|
5
|
(1)画出散点图.观察散点图,说明两个变量有怎样的相关关系;
(2)用最小二乘法计算利润额关于销售额的回归直线方程;
(3)当销售额为4(千万元)时,利用(2)的结论估计该零售店的利润额(百万元).