(本题满分14分).如图,在棱长为4的正方体ABCD-A1B1C1D1中,E是D1C1上的一点且EC1=3D1 E,
(1) 求直线BE与平面ABCD所成角的正切值;
(2)求异面直线BE与CD所成角的余弦值.
(本题满分12分).如图,在三棱柱ABC-中,点E,D分别是与BC的中点.
求证:平面EB//平面AD.
(本题满分12分).画出右边水平放置的几何体的三视图.
正方形AB1C1D的边长为2, E、F分别是AB和CD的中点,将正方形沿EF折成直二面角(如图所示),M为矩形AEFD内一点,如果∠MBE=∠MBC,MB和平面BCF所成角的正切值为.那么点M到直线EF的距离为__________.
如图,已知△ABC的平面直观图是边长为2的正三角形,则原△ABC的面积为__________.
如图,一个底面半径为R的圆柱形量杯中装有适量的水,若放入一个半径为r的实心铁球,水面高度恰好升高r,则=____.