(本小题满分14分)
已知函数.
(Ⅰ)若,求函数的极值;
(Ⅱ)当时,不等式恒成立,求实数的取值范围。
(本小题满分14分)
已知:数列{}的前n项和为,满足=
(Ⅰ)证明数列{}是等比数列.并求数列{}的通项公式=?
(Ⅱ)若数列{}满足=log2(),而为数列的前n项和,求=?
(本小题满分14分)
如右图,PA⊥平面ABCD,ABCD是矩形,PA=AB=1,∠PDA=30°,点F是PB的中点,
点E在边BC上,
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)证明:AF⊥平面PBC;
(Ⅲ)当BE等于何值时,二面角P—DE—A的大小为45°?
(本小题满分12分)
某设区举办2010年上海世博会知识宣传活动,进行现场抽奖,抽奖规则是:盒中装有10张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案,参加者每次从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖。
(I)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人笑说:我只知道若从盒总抽两张都不是“海宝”卡的概率是,求抽奖者获奖的概率;
(Ⅱ)现有甲乙丙丁四人依次抽奖,抽后放回,另一个人再抽,用表示获奖的人数,求 的分布列及。
(本小题满分12分)
在△ABC中,角A、B、C对应的边分别为、b、c,且,
(Ⅰ)求cosB的值;
(Ⅱ)若且,求和c的值。
(几何证明选讲选做题)如右图,P是⊙O外一点,PD为⊙O的切线,D为切点,割线PEF经过圆心O,若PF=12,PD=,则∠EFD为____ _度(3分),线段FD的长为___ ___(2分)。