(本小题满分14分)已知动圆与直线相切,且过定点F(1, 0),动圆圆心为M.
(1)求点M的轨迹C的方程;
(2)若直线l与曲线C交于A、B两点,且(O为坐标原点),求证:直线l过一定点.
(本小题满分14分)如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F.
(I) 证明: PA∥平面EDB;
(II) 证明:PB⊥平面EFD;
(III) 求三棱锥的体积.
(本小题满分14分)设函数.
(Ⅰ)讨论的单调性;
(Ⅱ)若对任意恒成立,求实数m的取值范围.
(本小题满分12分)三人独立破译同一份密码,已知三人各自译出密码的概率分别为,且他们是否破译出密码互不影响.
(1)求恰有二人破译出密码的概率;
(2)求密码被破译的概率.
(本小题满分12分)已知,且,求的值.
(几何证明选讲选做题)如图,过圆O外一点M作它的一条切线,切点为A,过A作直线AP垂直直线OM,垂足为P;N为线段AP上一点,直线NB垂直直线ON,且交圆O于B点;过B点的切线交直线ON于K,则∠OKM = .