(14分)已知定义在上的函数满足:
,且对于任意实数,总有成立.
(1)求的值,并证明函数为偶函数;
(2)若数列满足,求证:数列为等比数列;
(3)若对于任意非零实数,总有.设有理数满足,判断和 的大小关系,并证明你的结论.
(14分)已知aÎR,函数f(x)=x| x-a |.
(1)当a=2时,求使f(x)=x成立的的集合;
(2)求函数y=f(x)在区间上的最小值.
(14分)若椭圆:的离心率等于,抛物线:的焦点在椭圆的顶点上。
(1)求抛物线的方程;
(2)求过点的直线与抛物线交、两点,又过、作抛物线的切线、,当时,求直线的方程。
(14分)如图,△ABC内接于圆O,AB是圆O的直径,,
,设AE与平面ABC所成的角为,且,
四边形DCBE为平行四边形,DC平面ABC.
(1)求三棱锥C-ABE的体积;
(2)证明:平面ACD平面ADE;
(3)在CD上是否存在一点M,使得MO//平面ADE?证明你的结论.
(12分)由于当前学生课业负担较重,造成青少年视力普遍下降,现从某高中随机抽取16名学生,经校医用对数视力表检查得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如下:
(Ⅰ)指出这组数据的众数和中位数;
(Ⅱ)若视力测试结果不低丁5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率;
(Ⅲ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记表示抽到“好视力”学生的人数,求的分布列及数学期望.
(12分)已知函数(,)为偶函数,且函数图象的两相邻对称轴间的距离为.
(1)求的值;
(2)将函数的图象向右平移个单位后,纵坐标不变,得到函数的
图象,求的单调递减区间.