已知集合 若则实数a的取值范围是( )
A. B. C. D.
(本题满分12分)某学校组织的一次篮球定点投篮训练中,规定每人最多投3次:在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次。某学生在A处的命中率q1=0.25,在B处的命中率q2,该同学选择先在A处投一球,以后都在B处投,用X表示该同学投篮结束后所得的总分,其分布列如下:
X |
0 |
2 |
3 |
4 |
5 |
P |
0.03 |
p1 |
p2 |
p3 |
p4 |
(1)求q2的值;
(2)求随机变量X的均值E(X);
(3)试比较该同学选择都在B处投篮得分超过3分与上述方式投篮得分超过3分的概率的大小。
(本题满分12分)下表是某班英语和数学成绩的分布表,已知该班有50名学生,成绩分为1~5个档次。如:表中英语成绩是4分、数学成绩是2分的人数有5人。现设该班任意一位学生的英语成绩为m,数学成绩为n。
n m |
数学 |
|||||
5 |
4 |
3 |
2 |
1 |
||
英 语 |
5 |
1 |
3 |
1 |
0 |
1 |
4 |
1 |
0 |
7 |
5 |
1 |
|
3 |
2 |
1 |
0 |
9 |
3 |
|
2 |
1 |
b |
6 |
0 |
a |
|
1 |
0 |
0 |
1 |
1 |
3 |
(1)求m=4,n=3的概率;
(2)求在m≥3的条件下,n=3的概率;
(3)求a+b的值,并求m的数学期望;
(4)若m=2与n=4是相互独立的,求a,b的值。
(本题满分12分)盒中有5个红球,11个蓝球。红球中有2个玻璃球,3个木质球;蓝球中有4个玻璃球,7个木质球。现从中任取一球,假设每个球摸到的可能性都相同,若已知取到的球是玻璃球,求它是蓝球的概率。
(本题满分12分)对于二项式(1-x)10, 求:
(1)展开式的中间项是第几项?写出这一项;
(2)求展开式中各项的系数的绝对值的和;
(本题满分12分)三人独立破译同一份密码.已知三人各自破译出密码的概率分别为且他们是否破译出密码互不影响.
(Ⅰ)求恰有二人破译出密码的概率;
(Ⅱ)“密码被破译”与“密码未被破译”的概率哪个大?说明理由.