已知函数.
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数的图象在点处的切线的倾斜角为,对于任意的,函数在区间上总不是单调函数,求的取值范围;
(Ⅲ)求证:.
已知定义在上的奇函数在处取得极值.
(Ⅰ)求函数的解析式;
(Ⅱ)试证:对于区间上任意两个自变量的值,都有成立;
(Ⅲ)若过点可作曲线的三条切线,试求点P对应平面区域的面积.
设,函数.
(Ⅰ)若,求曲线在点处的切线方程;
(Ⅱ)求函数在上的最小值.
已知函数.
(I)若函数在点处的切线斜率为4,求实数的值;
(II)若函数在区间上存在零点,求实数的取值范围
若关于的实系数方程有两个根,一个根在区间内,另一根在区间内,记点对应的区域为.
(1)设,求的取值范围;
(2)过点的一束光线,射到轴被反射后经过区域,求反射光线所在直线经过区域内的整点(即横纵坐标为整数的点)时直线的方程.
已知函数.
(1)当a = 4,解不等式;
(2)若函数是奇函数,求a的值;
(3)若不等式在上恒成立,求实数a的取值范围.