设函数。
(1) 若,求的单调区间;
(2) 若当时,求的取值范围
设分别是椭圆的左、右焦点,过斜率为1的直线与相交于两点,且成等差数列。
(1)求的离心率;
(2) 设点满足,求的方程
为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
是否需要志愿 性别 |
男 |
女 |
需要 |
40 |
30 |
不需要 |
160 |
270 |
(1) 估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2) 能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3) 根据(2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助的老年人的比例?说明理由
附:
如图,已知四棱锥P-ABCD的底面为等腰梯形,ABCD,ACBD,垂足为H,PH是四棱锥的高 ,E为AD中点
(1) 证明:PEBC
(2) 若APB=ADB=60°,求直线PA与平面PEH所成角的正弦值
设数列满足
(1) 求数列的通项公式;
(2) 令,求数列的前n项和
在△ABC中,D为边BC上一点,BD=DC,ADB=120°,AD=2,若△ADC的面积为,则BAC=_______