设函数= + 1。
(Ⅰ)画出函数y=的图像:
(Ⅱ)若不等式≤ax的解集非空,求n的取值范围
已知直线:
|
|
(Ⅰ)当a=时,求与的交点坐标:
(Ⅱ)过坐标原点O做的垂线,垂足为A、P为OA的中点,当a变化时,
|
求P点轨迹的参数方程,并指出它是什么曲线。
如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于
E点,证明:
(Ⅰ)=。
(Ⅱ)=BE x CD。
设函数
(Ⅰ)若a=,求的单调区间;
(Ⅱ)若当≥0时≥0,求a的取值范围
设,分别是椭圆E:+=1(0﹤b﹤1)的左、右焦点,过的直线与E相交于A、B两点,且,,成等差数列。
(Ⅰ)求
(Ⅱ)若直线的斜率为1,求b的值。
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老人,结果如下:
(Ⅰ)估计该地区老年人中,需要志愿提供帮助的老年人的比例;
(Ⅱ)能否有99℅的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(Ⅲ)根据(Ⅱ)的结论,能否提出更好的调查办法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由。
附: