(本小题满分12分)
设数列中的每一项都不为0。
证明:为等差数列的充分必要条件是:对任何,都有
。
(本小题满分13分)
已知椭圆经过点,对称轴为坐标轴,焦点在轴上,离心率。
(Ⅰ)求椭圆的方程;
(Ⅱ)求的角平分线所在直线的方程;
(Ⅲ)在椭圆上是否存在关于直线对称的相异两点?若存在,请找出;若不存在,说明理由。
(本小题满分12分)
如图,在多面体中,四边形是正方形,∥,,,,,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求证:平面;
(Ⅲ)求二面角的大小。
(本小题满分12分)
设为实数,函数。
(Ⅰ)求的单调区间与极值;
(Ⅱ)求证:当且时,。
本小题满分12分)
设是锐角三角形,分别是内角所对边长,并且
。
(Ⅰ)求角的值;
(Ⅱ)若,求(其中)。
甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球。先从甲罐中随机取出一球放入乙罐,分别以和表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号)。
①;
②;
③事件与事件相互独立;
④是两两互斥的事件;
⑤的值不能确定,因为它与中空间哪一个发生有关