(10分)已知△ABC的三边长为有理数
(1)求证cosA是有理数
(2)对任意正整数n,求证cosnA也是有理数
(10分)某厂生产甲、乙两种产品,生产甲产品一等品80%,二等品20%;生产乙产品,一等品90%,二等品10%。生产一件甲产品,如果是一等品可获利4万元,若是二等品则要亏损1万元;生产一件乙产品,如果是一等品可获利6万元,若是二等品则要亏损2万元。设生产各种产品相互独立
(1)记x(单位:万元)为生产1件甲产品和件乙产品可获得的总利润,求x的分布列
(2)求生产4件甲产品所获得的利润不少于10万元的概率
21(从以下四个题中任选两个作答,每题10分)
(1)几何证明选讲
AB是⊙O的直径,D为⊙O上一点,过点D作⊙O的切线交AB延长线于C,若DA=DC,求证AB=2BC
(2)矩阵与变换
在平面直角坐标系xOy中,A(0,0),B(-3,),C(-2,1),设k≠0,k∈R,M=,N=,点A、B、C在矩阵MN对应的变换下得到点A1,B1,C1,△A1B1C1的面积是△ABC面积的2倍,求实数k的值
(3)参数方程与极坐标
在极坐标系中,圆ρ=2cosθ与直线3ρcosθ+4ρsinθ+a=0相切,求实数a的值
(4)不等式证明选讲
已知实数a,b≥0,求证:
(16分)设使定义在区间上的函数,其导函数为.如果存在实数和函数,其中对任意的都有>0,使得,则称函数具有性质.
(1)设函数,其中为实数
①求证:函数具有性质
②求函数的单调区间
(2)已知函数具有性质,给定,,且,若||<||,求的取值范围
(16分)设各项均为正数的数列的前n项和为,已知,数列是公差为的等差数列.
①求数列的通项公式(用表示)
②设为实数,对满足的任意正整数,不等式都成立。求证:的最大值为
(16分)在平面直角坐标系中,如图,已知椭圆的左右顶点为A,B,右顶点为F,设过点T()的直线TA,TB与椭圆分别交于点M,,其中m>0,
①设动点P满足,求点P的轨迹
②设,求点T的坐标
③设,求证:直线MN必过x轴上的一定点
(其坐标与m无关)