(本大题14分)如图,在棱长为a的正方体ABCD-A1B1C1D1中,E、F、G分别是CB、CD、CC1的中点.
(1)求证:B1D1∥面EFG
(2)求证:平面AA1C⊥面EFG .
(本题16分)已知{an}是等差数列,且a1=2,a1+a2+a3=12.
(1)求数列{an}的通项公式;
(2)令bn= an3n,求{bn}的前n项的和Tn.
(本题14分)已知△ABC中,角A,B,C,所对的边分别是a,b,c,且2(a2+b2-c2)=3ab.
(1)求cosC;
(2)若c=2,求△ABC面积的最大值.
(本题14分)已知P(2,1),直线l:x-y+4=0.
(1)求过点P与直线l平行的直线方程;
(2)求过点P与直线l垂直的直线方程.
若直线与曲线有两个不同的交点,实数的取值范围
圆上到直线的距离为1的点共有 个.