附加题) 某电视台的一个智力游戏节目中,有一道将四本由不同作者所著的外国名著A、B、C、D与它们的作者连线的题目,每本名著只能与一名作者连线,每名作者也只能与一本名著连线。每连对一个得3分,连错得一1分,一名观众随意连线,他的得分记作X。
(1)求该观众得分非负的概率;
(2)求X的分布列及数学期望。
附加题) 如图所示,在直三棱柱ABC—A1B1C1中,D是棱CC1的中点。
(1)证明:A1D⊥平面AB1C1;
(2)求二面角B—AB1—C1的余弦值;
附加题) 已知的极坐标方程分别是(a是常数).
(1)分别将两个圆的极坐标方程化为直角坐标方程;
(2)若两个圆的圆心距为的值。
附加题) 已知矩阵,
(1)计算AB;
(2)若矩阵B把直线的方程。
若存在实数k,b,使得函数和对其定义域上的任意实数x同时满足:,则称直线:为函数的“隔离直线”。已知(其中e为自然对数的底数)。试问:
(1)函数的图象是否存在公共点,若存在,求出交点坐标,若不存在,说明理由;
(2)函数是否存在“隔离直线”?若存在,求出此“隔离直线”的方程;若不存在,请说明理由。
已知函数
(1)若函数的图象的一个公共点恰好在x轴上,求a的值;
(2)若p和q是方程的两根,且满足证明:
当