已知直线的极坐标方程为,曲线C的参数方程为,设点是曲线C上的任意一点,求到直线的距离的最大值.
已知矩阵=,求的特征值,及对应的特征向量.
(本小题16分)
已知函数,为正常数。
(1)若,且,求函数的单调增区间;
(2)若,且对任意,,都有,求的的取值范围。
(本小题16分)
已知数列满足:(为常数),数列中,。
(1)求;
(2)证明:数列为等差数列;
(3)求证:数列中存在三项构成等比数列时,为有理数。
(本小题16分)
已知抛物线的顶点在坐标原点,对称轴为轴,焦点在直线上,直线与抛物线相交于两点,为抛物线上一动点(不同于),直线分别交该抛物线的准线于点。
(1)求抛物线方程;
(2)求证:以为直径的圆经过焦点,且当为抛物线的顶点时,圆与直线相切。
(本小题14分)
已知某种稀有矿石的价值(单位:元)与其重量(单位:克)的平方成正比,且克该种矿石的价值为元。
(1)写出(单位:元)关于(单位:克)的函数关系式;
(2)若把一块该种矿石切割成重量比为的两块矿石,求价值损失的百分率;
(3)把一块该种矿石切割成两块矿石时,切割的重量比为多少时,价值损失的百分率最大。(注:价值损失的百分率;在切割过程中的重量损耗忽略不计)