(本题满分16分)已知,,,
⑴当时, 讨论的单调性、极值;
⑵当时,求证:成立;
⑶是否存在实数,使时,的最小值是3,若存在,求出的值;若不存在,说明理由.
(本题满分16分)已知椭圆(a>b>0)
(1)当椭圆的离心率,一条准线方程为x=4 时,求椭圆方程;
(2)设是椭圆上一点,在(1)的条件下,求的最大值及相应的P点坐标。
(3)过B(0,-b)作椭圆(a>b>0)的弦,若弦长的最大值不是2b,求椭圆离心率的取值范围。
(本题满分16分)已知双曲线,顺次连接其实轴、虚轴端点所得四边形的面积为8,
(1)求双曲线焦距的最小值,并求出焦距最小时的双曲线方程;
(2)设A、B是双曲线上关于中心对称的两点,P是双曲线上另外一点,若直线PA、PB的斜率乘积等于,求双曲线方程。
(本题满分14分)中,A、B两点的坐标分别是(-2,0)(2,0),AC、AB、BC成等差数列。
(1)求顶点C的轨迹方程;
(2)直线y=x-2与C点轨迹交于MN两点,求线段MN长度。
(本题满分14分)已知函数在x=1处有极值10.
(1)求a、b的值;
(2)求的单调区间;
(3)求在[0,4]上的最大值与最小值。
(本题满分14分)设方程表示曲线C.
(1)m=5时,求曲线C的离心率和准线方程;
(2)若曲线C表示椭圆,求椭圆焦点在y轴上的概率。