在一椭圆中以焦点为直径两端点的圆,恰好过短轴的两顶点,则此椭圆的离心率等于 ( )
A. B. C. D.
设和是一对异面直线,它们所成个的角为θ,且,以下四个命题中,
①在过的平面中存在平面,使;
②在过的平面中存在平面β,使;
③在过的平面中存在平面,使它们所形成的二面角(较小的)的大小为;
④在过的平面中存在平面,使和所形成的线面角的大小为.
正确命题的个数为 ( )
A.1 B.2 C.3 D.4
对任意实数,在下列命题中,真命题的是 ( )
A.“”是“”的必要条件; B.“”是“”的必要条件;
C.“”是“”的充分条件; D.“”是“”的充分条件;
过点(-1,3)且垂直于直线的直线方程为 ( )
A. B.
C. D.
设函数的定义域为(0,+∞),且对任意正实数x,y都有f(x·y)=f(x)+f(y)恒成立,已知f(2)=1且x>1时f(x)>0.
(1)求;
(2)判断y=f(x)在(0,+ ∞)上的单调性;
(3)一个各项均为正数的数列其中sn是数列的前n项和,求
已知
(1)求f(x),g(x)的表达式;
(2)求证:当x>0时,方程f(x)=g(x)+2有唯一解。